APPENDIX A NDEP FIELD NOTES AND ANALYTICAL RESULTS

Nevada Division of E onmental Protection

WATER SAMPLING RECORD

GPS Datapoint ID: OOS GPS Unit:

Project: Anaconda/Yerington
File No.: Div 50/ A-17
Weather Conditions: 0/oak, Sunny (2 P. Location: Washer Conditions)

SAM	SAMPLE 10"	TIME (hrs)	TEMP ("/c)	Conduct (u)	Æ	COMMENTS (odor, color, turbidity, depth, container volume, preservative)
JS- (M	-SW 008	930	ه ل ا ال	989	1,5	College Sample, Francisco
,	•					WATER OF CLUBET.
•	•				-	
•	,					
•	•					
,	•	-				
•	•					
•	1					
-	,					
•	•					
3	•			-		
•	•				٠	
•	ı					
•	•					
Sample ID	Sample ID = Media / Sampling Point ID / Site #	ilng Point iD				Sampling Team: CFL , QA KES
MEDIA	SAMPLING POINT ID	POINT ID	SITE *	ODO DIVISO		
W water S soil	SB Soil Boring MW Monitoring LS Leachate LY Lysimeter SW Surface W DW Domestic WS Water Sup PB Pump-bac	Soil Boring Monitoring Well Leachate Sample Lysimeter Surface Water Domestic Well Water Supply	000 003 600 616.	ON ELMIQUE	Signature.	

Nevada Division of E... fronmental Protection

WATER SAMPLING RECORD

GPS Unit:

GPS Datapoint ID: 009

Anaconda/Yerington Project:

Weather Conditions: Div 50/ A-17 File No.:

Sampling Date:

WARUSKA

US-EPA R-9 Laboratory Analytical Lab: Location:

COMMENTS (odor, color, turbidity, depth, container volume, preservative)	Collector Sample Come of Collector	MAIN'N N'ENERGY AND STATE	OF CALLERY LANGE SALES	(Little With Colonial Colonia									
Hd	7.78						·						
Conduct (µ)	600				-						,	ř	
TEMP ("/c)	8.1											-	
TIME (hrs)	1030				ž,				-				
SAMPLE ID*	14 - 54 ANG			•	•	,	,	•	•	•	•		

903 903 903 903

Soil Boring Monitoring Well Leachate Sample

water soil

≥ ω

-ysimeter

Surface Water Domestic Well Water Supply Pump-back Well

SITE #

SAMPLING POINT ID

MEDIA

Sample ID = Media / Sampling Point ID / Site #

KE		,			
CPL	,	10	1.0		
" COA	J.A.		sul!		400
Sampling Team:	Samplers: (A	Signatulie:	The	- Ske	

66191

Date:

Reviewed by:

Nevada Division of Environmental Protection

WATER SAMPLING RECORD

GPS Datapoint ID: 0/0 **GPS Unit:**

Project: Anaconda/Yerington File No.: Div 50/ A-17 Weather Conditions:

(1/16/99 US-EPA R-9 Laboratory

Sampling Date: (1/16/99

Analytical Lab: US-EPA R-9 Laboratory

Class Lawy 62 F Location: Warsuska Drana

			,		,	
SAM	SAMPLE ID"	TIME (hrs)	TEMP ("/c)	Conduct (u)	퓹	COMMENTS (odor, color, turbidity, depth, container volume, preservative)
JS: (M	SW 010	1115	(1.0	685	8.59	COULTY SAMPLE @ INTX
•						
•	•					
	•					
•	•					
,						
•						
,						
٠	•					
•		~				
,	•					
•						
	•					
•	•					
* Sample ID	* Sample ID = Media / Sampling Point ID / Site #	ling Point ID	/ Site #		Sampli	Sampling Team: QA, CFL, XX
MEDIA	SAMPLING POINT ID	POINT ID	SITE #	ODO DIVISIO		8
W water S soil	SB Soll Boring MW Monitoring LS Leachate LY Lysimeter SW Surface W DW Domestic WS Water Sup	Soil Boring Monitoring Well Leachate Sample Lysimeter Surface Water Domestic Well Water Supply	900 002 900 4 003	TON ELMONDE	Signa Aute:	Sunt Reviewed by
						99(9)///

Nevada Division of Environmental Protection

WATER SAMPLING RECORD

GPS Unit:

GPS Datapoint ID: \(\int \)

Project: Anaconda/Yerington
File No.: Div 50/ A-17
Weather Conditions: Sunhy (Lean, Teny 64° F. Location: Wassucka

US-EPA R-9 Laboratory

			,			
SAMP	SAMPLE ID*	TIME (hrs)	TEMP (%)	Conduct (n)	Ha	COMMENTS (odor, color, turbidity, depth, container volume, preservative)
WS-17	110 p	0 <i>511</i>	13.6	1260	7.0R	Collegation Sample @ 0-10 ml
	•				8.12	Novary of (we reached).
•	,					SNAILS IN THE WATER.
•	•					STRAN PROTECT.
•	•					
•	•					
•	•					NOTE: THIS IS A LCS (LAR
٠	•					L 2
•	1					THE CONTRINIEDS CONSUMED
•						
•	•					
•	•					
Sample ID =	• Sample ID = Media / Sampling Point ID / Site #	iling Point ID /	Site #	-	Samplir	Sampling Team: QA , KES, CR
MEDIA	SAMPLING POINT ID	POINT ID	SITE#	ODO DIVISIO	<u>. </u>	118: QA
V water	SB Soil E MV Monit LS Leact LY Lysim SW Surfa OW Dome WS Water	Soil Boring Monitoring Well Leachate Sample Lysimeter Surface Water Domestic Well Water Supply Pump-back Well	000 0002 6.c. 44	ON EUMOUR	Signature:	~
		17			•	

EPA REGION 9 LABORATORY-RICHMU. . Ó, CA SUMMARY OF ANALYTICAL RESULTS

Water

Analysis: Matrix:

R00S09 Case Number: Site:

ANACONDA COPPER MINE

99321A 12/20/99 SDC: Date:

Sample No.	×			-	Ž				****														
Sample I.D.	WDW ANT	7	Acco.	7	V	1 40.		Ċ	4	•	•					Y/N			Y/X				_
Lab Sample I.D.	AB25556	= 1	Ì	?	WSW-008	<u> </u>	から まま アヤヤー	ر	WSW-009	3	4			との子が	(b)	WSW-011 N	4 3 3	.	WWS-014		Periors	*	
Date of Collection	11/15/99				11/14/00	•			A65534			AB25559	•			AB25560			AB25561	19	ise	į	
Valo	ug/L				ne/L				66/01/11			11/16/99	_			11/16/99			11/16/99	2			
Analyte	Result		0	Com	Result	Γ	6	15	Parmit	F	_	┸			T	Be/L	+	-	Jon		ŀ	-	7
Aluminum (200.7)	200	Э			200	=	+		200	1:	5			9	5	Result	7	0]	<u></u>	7	9	Com
Antimony (200.8)	S	Э			\$	1=	T	+		} :	+	87		\prod	1	2	-	_	82		7	\dashv	T
Arsenic (200.8)	20	3			92	1	T	+		+	1	1	7	I	1		7	7	D 5		3	+	Δ
Barium (200.8)	7,4			I	11	T	\dagger	\dagger	21 3	+	1	\downarrow		1	4	82	+	+	8		7	+	Т
Beryllium (200.7)	8	Э	I		-	1=	T	t		+	+	g .		I			7	<u>د</u>	9		7	-	U
Boron (200.7)	200				000	,	\dagger	\dagger		+	+	^	2		1		5	-	\$		5	4	
Cadmium (200.8)	8	5			5	=	f	\dagger	MC .	+	+	808	T		1	1100	+	+	8			-	٦
Calcium (200.7)	91000				75000	1	\dagger	\dagger		+	+		2		1	4	7	1	+		1	\dashv	T
Chromium (200.7)	01	5	T		01	=	t	\dagger		+	\bot	0000		I	1	200000	+	\downarrow	3788		+	\dashv	٦
Cobaff (200.8)	\$	5	T		*	=	+	+		+	+	2		1	†	20	+	\downarrow	9		5	+	
Copper (200.8)	5	=	I			1	\dagger	+		\	+	\downarrow	7		†	43	+	4	\$		Ы	4	٦
Iron (200.7)	90	, =	1	T	, ,	T	\dagger	\dagger	-	7	1	\downarrow		1	1	170	+	-	12		\dashv	-	
Lead (200.8)	3	, =	1	T	300	1:	\dagger	+		+	+	8		1	1	30000	+	4	8		5	-	
Magnesium (200.7)	15000	1	T	1	0000	1	\dagger	+		+	\downarrow	5	3	1		18	\dashv	_	S		D	_	
Manganese (200.8)	,	1=	T	1	90097	\dagger	+	+	11000	+	4	13000			1	27000	-	\dashv	8700				
Mercury (245.1)	0.0	1=	T	T	900	1	\dagger	\dagger		+	1	140	1	_	1	2700	-		2		Ω	Н	
Molybdenum (200.8)	6	1	T	T	91,	+	+	+		+	\downarrow	07	5	1	1	0.1	7	1	0.2		Ъ		
Nickel (200.7)	50	5	T		S	╁	+	+	5	+	1	= :	1	†	†	=	+	1	~		5	_	7
Potassium (200.7)	8000	5	T	T	000	+	-	+		+	1	2 8	1	†	†	30	7	1	8		_	+	T
Selenium (200.9)	10	ם			10	=	-	-			4	3	1	1	\dagger		+	1	4000		7	7]
Silver (200.8)	8	2	T	T	5	\ -	+	+		 	1	OI,	7	\dagger	†		1		0		<u> </u>	4	٦
Sodium (200.7)	45000	1	\vdash	T	120000	†	+	+		+	1	s	7	†	†	S	1	4	2		5		_
Thellium (200.8)	5	=	T	I	AAAA y	1=	+	+		+	1	77000	1	+	+	190000	4	_	4000		-		
Venadium (200.7)	20	╁	\dagger	T		 	+	+		+	\downarrow	2	7	+	+	5 U	_	1	~		ם	_	\Box
Zinc (200.8)	62	+	\dagger	f		+ :	+	+		+	\downarrow	20	3	+	1	190	4		20	ו	U		
	Ž:	1	 	1	07		4	1	D 02	$\frac{1}{2}$	4	20	ם	-		350	_		20	U	_	<u> </u>	Γ

Com - Comments refer to the corresponding section in the report narrative for each letter.

N/A - Not Applicable.

N/R - Not Required.

Q - Refer to data qualifiers.

U - The parameter was analyzed for, but was not detected; The associated value is the sample detection limit, adjusted for dilution, if any.

J - The associated value is an estimated quantity.